Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 150: 106296, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141363

RESUMO

It is well established that the biomechanical properties of the Stratum Corneum (SC) are influenced by both moisture-induced plasticization and the lipid content. This study employs Atomic Force Microscopy to investigate how hydration affects the surface topographical and elasto-viscoplastic characteristics of corneocytes from two anatomical sites. Volar forearm cells underwent swelling when immersed in water with a 50% increase in thickness and volume. Similarly, medial heel cells demonstrated significant swelling in volume, accompanied by increased cell area and reduced cell roughness. Furthermore, as the water activity was increased, they exhibited enhanced compliance, leading to a decreased Young's modulus, hardness, and relaxation times. Moreover, the swollen cells also displayed a greater tolerance to strain before experiencing permanent deformation. Despite the greater predominance of immature cornified envelopes in plantar skin, the comparable Young's modulus of medial heel and forearm corneocytes suggests that cell stiffness primarily relies on the keratin matrix rather than on the cornified envelope. The Young's moduli of the cells in distilled water are similar to those reported for the SC, which suggests that the corneodesmosomes and intercellular lamellae lipids junctions that connect the corneocytes are able to accommodate the mechanical deformations of the SC.


Assuntos
Epiderme , Pele , Água , Queratinas , Membrana Celular
2.
Skin Res Technol ; 29(11): e13507, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38009042

RESUMO

BACKGROUND: The Stratum Corneum (SC) is the first barrier of the skin. The properties of individual cells are crucial in understanding how the SC at different anatomical regions maintains a healthy mechanical barrier. The aim of the current study is to present a comprehensive description of the maturation and mechanical properties of superficial corneocytes at different anatomical sites in the nominal dry state. MATERIALS AND METHODS: Corneocytes were collected from five anatomical sites: forearm, cheek, neck, sacrum and medial heel of 10 healthy young participants. The surface topography was analysed using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). The level of positive-involucrin cornified envelopes (CEs) and desmoglein-1 (Dsg1) were used as indirect measures of immature CEs and corneodesmosomes, respectively. In addition, AFM nanoindentation and stress-relaxation experiments were performed to characterise the mechanical properties. RESULTS: Volar forearm, neck and sacrum corneocytes presented similar topographies (ridges and valleys) and levels of Dsg1 (13-37%). In contrast, cheek cells exhibited circular nano-objects, while medial heel cells were characterized by villi-like structures. Additionally, medial heel samples also showed the greatest level of immature CEs (32-56%, p < 0.001) and Dsg1 (59-78%, p < 0.001). A large degree of inter-subject variability was found for the Young's moduli of the cells (0.19-2.03 GPa), which was correlated with the level of immature CEs at the cheek, neck and sacrum (p < 0.05). CONCLUSION: It is concluded that a comprehensive study of the mechanical and maturation properties of corneocytes may be used to understand the barrier functions of the SC at different anatomical sites.


Assuntos
Epiderme , Pele , Humanos , Epiderme/química , Queratinócitos , Células Epidérmicas , Antebraço
3.
J Dermatol Sci ; 112(2): 63-70, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37953180

RESUMO

BACKGROUND: Pressure ulcers (PUs) are chronic wounds that are detrimental to the quality of life of patients. Despite advances in monitoring skin changes, the structure and function of skin cells over the site of pressure ulcers are not fully understood. OBJECTIVE: The present study aims to evaluate local changes in the properties of superficial corneocytes in category 1 PU sites sampled from a cohort of hospitalised patients. METHODS: Cells were collected from a PU-compromised site and an adjacent control area and their topographical, maturation and mechanical properties were analysed. RESULTS: Corneocytes at the PU-compromised site were characterised by higher levels of immature cornified envelopes (p < 0.001) and greater amounts of desmoglein-1 (corneodesmosomal protein) (p < 0.001) compared to the adjacent control area. The cells at the control site presented the typical ridges-and-valleys topographical features of sacrum corneocytes. By contrast, the PU cells presented circular nano-objects at the cell surface, and, for some patients, the cell topography was deformed. CEs at the PU site were also smaller than at the control site. Although differences were not observed in the mechanical properties of the cells, those of the elderly patients were much softer compared with young subjects. CONCLUSION: This is the first study investigating the changes in corneocyte properties in category I pressure ulcers. Superficial cells at the PU sites showed altered topographical and maturation characteristics. Further studies are required to elucidate if these changes are a consequence of early loss of skin integrity or a result of mechanical and microclimate insults to the skin surface.


Assuntos
Úlcera por Pressão , Humanos , Idoso , Qualidade de Vida , Pele , Queratinócitos , Membrana Celular
4.
Skin Pharmacol Physiol ; 34(3): 146-161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33780956

RESUMO

BACKGROUND: Skin is the interface between an organism and the external environment, and hence the stratum corneum (SC) is the first to withstand mechanical insults that, in certain conditions, may lead to integrity loss and the development of pressure ulcers. The SC comprises corneocytes, which are vital elements to its barrier function. These cells are differentiated dead keratinocytes, without organelles, composed of a cornified envelope and a keratin-filled interior, and connected by corneodesmosomes (CDs). SUMMARY: The current review focusses on the relationship between the morphological, structural, and topographical features of corneocytes and their mechanical properties, to understand how they assist the SC in maintaining skin integrity and in responding to mechanical insults. Key Messages: Corneocytes create distinct regions in the SC: the inner SC is characterized by immature cells with a fragile cornified envelope and a uniform distribution of CDs; the upper SC has resilient cornified envelopes and a honeycomb distribution of CDs, with a greater surface area and a smaller thickness than cells from the inner layer. The literature indicates that this upward maturation process is one of the most important steps in the mechanical resistance and barrier function of the SC. The morphology of these cells is dependent on the body site: the surface area in non-exposed skin is about 1,000-1,200 µm2, while for exposed skin, for example, the cheek and forehead, is about 700-800 µm2. Corneocytes are stiff cells compared to other cellular types, for example, the Young's modulus of muscle and fibroblast cells is typically a few kPa, while that of corneocytes is reported to be about hundreds of MPa. Moreover, these skin cells have 2 distinct mechanical regions: the cornified envelope (100-250 MPa) and the keratin matrix (250-500 MPa).


Assuntos
Queratinócitos/citologia , Queratinócitos/metabolismo , Pele/citologia , Pele/metabolismo , Diferenciação Celular , Epiderme/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...